200 g pellet) or in the 100,000 g supernatant (this latter measured by equilibrium dialysis).

Further studies of high-affinity binding with parallel metabolism experiments indicated a relationship between high-affinity binding and metabolism. Each was potentiated by oxygen and suppressed by carbon monoxide: drugs which displaced propranolol from high-affinity binding inhibited propranolol metabolism (SKF 525-A, chlorpromazine, imipramine and lignocaine): changes in high-affinity binding with sex and age correlated with changes in metabolism.

This approach may provide another possible method of examining drug-cytochrome P-450 complex, analogous to microsomal difference spectra with the added advantage of providing a capacity term. Although there are some quantitative difficulties in directly correlating this

microsomal high-affinity capacity with the threshold of the first-pass phenomenon, it may be the case that such high-affinity subcellular binding is a common property of drugs which undergo first-pass hepatic extraction.

References

ROSENTHAL, H.E. (1967). A graphic method for the determination and presentation of binding parameters in a complex system. *Anal. Biochem.*, 20, 525-532.

SEGLEN, P.O. (1973). Preparation of rat liver cells. Exptl. Cell. Res., 74, 450-454.

SHAND, D.G. & RANGNO, R.E. (1972). The disposition of propranolol. I. Elimination during oral absorption in man. *Pharmacology*, 7, 159-168.

SHAND, D.G., RANGNO, R.E. & EVANS, G.H. (1972). The disposition of propranolol. II. Hepatic elimination in the rat. *Pharmacology*, 8, 344-352.

Changes in renal function following chronic phenobarbitone administration

E.E. OHNHAUS* & H. SIEGL

Department of Medicine, University of Bern, Switzerland

Following chronic administration of phenobarbitone (30 mg kg⁻¹ day⁻¹ i.p.) to rats increases in the urinary excretion of unchanged chlorothiazide were found (Ohnhaus, 1972). As the drug/creatinine clearance ratio for chlorothiazide is similar to that for p-amino hippurate (PAH) and therefore to renal plasma flow (Beyer, 1958), phenobarbitone might have an influence on glomerular filtration rate (GFR) or renal plasma flow (RPF).

SRF-male rats were treated intraperitoneally with phenobarbitone (30 mg kg⁻¹ day⁻¹) or sodium chloride respectively for 4 days. The latter rats formed a control group. Endogenous creatinine clearance in conscious rats and inulin clearance without induced diuresis under inactin anaesthesia were measured 24 h following the last dose of phenobarbitone. In an additional group of pretreated rats diuresis was induced by infusing 0.9% NaCl + 2% mannitol i.v. for 30 min at 5.0 ml

100 g⁻¹ h⁻¹ and inulin- and PAH-clearance were measured under the same experimental conditions.

Following 4 days treatment with phenobarbitone endogenous creatinine clearance and inulin-clearance with and without induced diuresis were not significantly different in control and phenobarbitone treated animals; changes in urine volume were not found. In contrast PAH-clearance was significantly increased in the phenobarbitone treated in comparison to the controls from $2.87 \text{ ml min}^{-1} 100 \text{ g}^{-1}$ body weight to $4.84 \text{ ml min}^{-1} 100 \text{ g}^{-1}$ body weight (P < 0.001).

These results indicate no changes in the glomerular filtration rate following chronic phenobarbitone administration, whereas the renal plasma flow is increased by about 69%. The increased excretion of chlorothiazide following chronic administration of phenobarbitone can therefore be attributed to changes in renal hemodynamics.

References

BEYER, H.K. (1958). The mechanism of action of chlorothiazide. Ann. N.Y. Acad. Scien., 71, 363-379. OHNHAUS, E.E. (1972). Urinary excretion of chlorothiazide in rats before and after phenobarbitone administration. Experientia, 28, 821-822.